Secondary Particle Dose and Rbe Measurements Using High-energy Proton Beams
نویسندگان
چکیده
Highand intermediate-energy protons are not able to directly form a track in a CR-39 etch detector (TED). Such detectors, however, can be used for the detection and dosimetry of the beams of these particles through the registration of secondary charged particles with sufficiently high values of linear energy transfer (LET). The studied were realized in a clinical proton beam of the NCC Korea, with primary energy of 72 to 220 MeV (1.1 to 0.4 KeV/ μm). The contribution of the secondary particle dose and the value of RBE both increase with decreasing proton energy. A strong agreement between experimentally obtained results and the predicted total cross sections was verified by the Alice code. Stimulation of the secondary particle dose by the Geant4 code also predicted results in agreement by experimental results. It is clear that higher cross sectional values lead to an increased production of secondary particles. This secondary particle dose is highly important for applications such as radiotherapy, radiobiology, and radiation protection.
منابع مشابه
Analysis of Relative Biological Effectiveness of Proton Beams and Iso-effective Dose Profiles Using Geant4
Background: The assessment of RBE quantity in the treatment of cancer tumors with proton beams in treatment planning systems (TPS) is of high significance. Given the significance of the issue and the studies conducted in the literature, this quantity is fixed and is taken as equal to 1.1.Objective: The main objective of this study was to assess RBE quantity of proton beams and their variations ...
متن کاملMicrodosimetric relative biological effectiveness of therapeutic proton beams.
When compared to photon beams, particle beams have distinct spatial distributions on the energy depositions in both the macroscopic and microscopic volumes. In a macroscopic volume, the absorbed dose distribution shows a rapid increase near the particle range, that is, Bragg peak, as particle penetrates deep inside the tissue. In a microscopic volume, individual particle deposits its energy alo...
متن کاملEvaluation of variable relative biological effectiveness and the creation of homogenous biological dose in the tumor region in helium ion radiation to the V79 cell line
In radiation therapy, ions heavier than proton have more biological advantages than a proton beam. Recently, ion helium has been considered due to high linear energy transfer (LET) to the medium and a higher relative biological effect (RBE). To design the spread-out Bragg peak (SOBP) of biological dose for radiation with any type of ion, we need exact values of RBE, which is dependent to dose, ...
متن کاملEvaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code
Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...
متن کاملAssessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX
Background: The present study aimed to investigate the equivalent dose in vital organs, including heart and lung, due to secondary particles produced during breast proton therapy. Materials and Methods: The numerical ORNL female-phantom was improved and simulated using the Monte Carlo MCNPX code. The depth-dose profile of proton beams with different energies was simulated. The proper energy ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014